Jumat, 10 Juni 2011

Data Warehouse, Data Mart, OLAP, dan Data Mining Data Warehouse

Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai sistem operasional dan sumber yang lain (sumber eksternal) yang menjadi perhatian penting bagi manajemen dalam organisasi dan ditujukan untuk keperluan analisis dan pelaporan manajemen dalam rangka pengambilan keputusan
 Data warehouse digunakan untuk mendukung pengambilan keputusan, bukan untuk melaksanakan pemrosesan transaksi
 Data warehouse hanya berisi informasi-informasi yang relevan bagi kebutuhan pemakai yang dipakai untuk pengambilan keputusan
Perbedaan DW dan OLTP
OLTP
• Menangani data saat ini
• Data bisa saja disimpan pada beberapa platform
• Data diorganisasikan berdasarkan fungsi atau operasi seperti penjualan, produksi, dan pemrosesan pesanan
• Pemrosesan bersifat berulang
• Untuk mendukung keputusan harian (operasional)
• Melayani banyak pemakai operasional
• Berorientasi pada transaksi

Data Warehouse
• Lebih cenderung menangani data masa lalu
• Data disimpan dalam satu platform
• Data diorganisasikan menuRut subjek seperti pelanggan atau produk
• Pemrosesan sewaktu-waktu, tak terstruktur, dan bersifat heuristik
• Untuk mendukung keputusan yang strategis
• Untuk mendukung pemakai manajerial yang berjumlah relatif sedikit
• Berorientasi pada analisis

Sumber Data untuk DW
1. Data operasional dalam organisasi, misalnya basis data pelanggan dan produk, dan
2. Sumber eksternal yang diperoleh misalnya melalui Internet, basis data komersial, basis data pemasok atau pelanggan.
 Berbagai data yang berasal dari sumber digabungkan dan diproses lebih lanjut oleh manajer data warehouse dan disimpan dalam basis data tersendiri.
 Selanjutnya, perangkat lunak seperti OLAP dan data mining dapat digunakan oleh pemakai untuk mengakses data warehouse
Sifat Data Warehouse
 Multidimensional yang berarti bahwa terdapat banyak lapisan kolom dan baris (Ini berbeda dengan tabel pada model relasional yang hanya berdimensi dua)
 Berdasarkan susunan data seperti itu, amatlah mudah untuk memperoleh jawaban atas pertanyaan seperti: “Berapakah jumlah produk 1 terjual di Jawa Tengah pada tahun n-3?”
Data Warehouse
 Mengingat sistem data warehouse memerlukan pemrosesan data dengan volume yang besar, sistem ini biasa diterapkan dengan menggunakan teknologi pemrosesan SMP (Symmetric Multiprocessing) dan MPP (Multiple Parallel Processing)
 Data warehouse dapat dibangun sendiri dengan menggunakan perangkat pengembangan aplikasi ataupun dengan menggunakan perangkat lunak khusus yang ditujukan untuk menangani hal ini
 Beberapa contoh perangkat lunak yang digunakan untuk administrasi dan manajemen data warehouse:
• HP Intelligent Warehouse (Hewlett Packard)
• FlowMark (IBM)
• SourcePoint (Software AG)
Petunjuk Membangun DW
 Menentukan misi dan sasaran bisnis bagi pembentukan data warehouse
 Mengidentifikasi data dari basis data operasional dan sumber lain yang diperlukan bagi data warehouse
 Menentukan item-item data dalam perusahaan dengan melakukan standarisasi penamaan data dan maknanya
 Merancang basis data untuk data warehouse
 Membangun kebijakan dalam mengarsipkan data lama sehingga ruang penyimpanan tak menjadi terlalu besar dan agar pengambilan keputusan tidak menjadi terlalu lamban.
 Menarik data produksi (operasional) dan meletakkan ke basis data milik data warehouse
Data Mart
 Bagian dari data warehouse yang mendukung kebutuhan pada tingkat departemen atau fungsi bisnis tertentu dalam perusahaan. Karakteristik yang membedakan data mart dan data warehouse adalah sebagai berikut (Connolly, Begg, Strachan 1999).
• Data mart memfokuskan hanya pada kebutuhan-kebutuhan pemakai yang terkait dalam sebuah departemen atau fungsi bisnis.
• Data mart biasanya tidak mengandung data operasional yang rinci seperti pada data warehouse.
• Data mart hanya mengandung sedikit informasi dibandingkan dengan data warehouse. Data mart lebih mudah dipahami dan dinavigasi.
Contoh Software Data Mart
 SmartMart (IBM)
 Visual Warehouse (IBM)
 PowerMart (Informatica)
OLAP
 OnLine Analytical Processing
 Suatu jenis pemrosesan yang memanipulasi dan menganalisa data bervolume besar dari berbagai perspektif (multidimensi). OLAP seringkali disebut analisis data multidimensi.
 Data multidimensi adalah data yang dapat dimodelkan sebagai atribut dimensi dan atribut ukuran
 Contoh atribut dimensi adalah nama barang dan warna barang, sedangkan contoh atribut ukuran adalah jumlah barang
Kemampuan OLAP
 Konsolidasi melibatkan pengelompokan data. Sebagai contoh kantor-kantor cabang dapat dikelompokkan menurut kota atau bahkan propinsi. Transaksi penjualan dapat ditinjau menurut tahun, triwulan, bulan, dan sebagainya. Kadangkala istilah rollup digunakan untuk menyatakan konsolidasi
 Drill-down adalah suatu bentuk yang merupakan kebalikan dari konsolidasi, yang memungkinkan data yang ringkas dijabarkan menjadi data yang lebih detail
 Slicing and dicing (atau dikenal dengan istilah pivoting) menjabarkan pada kemampuan untuk melihat data dari berbagai sudut pandang
Software OLAP
 Express Server (Oracle)
 PowerPlay (Cognos Software)
 Metacube (Informix/Stanford Technology Group)
 HighGate Project (Sybase)
Data Mining
 Perangkat lunak yang digunakan untuk menemukan pola-pola tersembunyi maupun hubungan-hubungan yang terdapat dalam basis data yang besar dan menghasilkan aturan-aturan yang digunakan untuk memperkirakan perilaku di masa medatang
 Data mining sering dikatakan berurusan dengan “penemuan pengetahuan” dalam basis data. Suatu aturan yang dihasilkan oleh data mining misalnya seperti berikut : “Kebanyakan pembeli mobil Forsa adalah wanita berusia di atas 30 tahun”.
Teknologi Untuk Data Mining
 Statistik
 Jaringan saraf (neural network)
 Logika kabur (fuzzy logic)
 Algoritma genetika
 dan berbagai teknologi kecerdasan buatan yang lain
Data Mining : Visualisasi Data
 Pendekatan data mining juga ada yang melalui visualisasi data
 Pada sistem seperti ini, pemakai akan dibantu untuk menemukan sendiri pola dari sejumlah data berukuran besar dengan didasarkan visualisasi oleh data mining
DATA MART
 Adalah subset dari gudang data yang didalamnya terdapat ringkasan yang diberikan kepada pengguna tertentu.
DATA MINING
 Adalah usaha untuk penggalian data yang tidak dapat diperoleh melalui pelaporan dan OLAP karena pola dan hubungannya tersembunyi.
Jenis Informasinya adalah
 Asosiasi (hubungan kejadian)
 Sekuen (Hubungan berdasar waktu)
 Klasifikasi (Pengelompokan)
 Kluster (klasifikasi krn tdk ada kelompok)
 Ramalan

2 komentar:

  1. mkasiihh utk penjelasanx, aku copas yah utk tugas sy??

    BalasHapus

  2. Salam Sukses Semuanya.......

    Butuh Konsultan Software..? Ke Kami Aja..

    Daftar Produk Software Kami :

    Proswitching
    Merupakan suatu paket program untuk pengiriman message / file antar cabang, biasanya digunakan untuk Financial Transaction. Software Proswitching sudah di gunakan dan terbukti sangat baik di beberapa bank antara lain : Bank BRI, Bank BRI Syariah, Bank BNI, Bank BTN, Bank Mega, Bank Mega Syariah, Bank DKI dan Bank Index

    Rekonsiliasi
    Merupakan program rekonsiliasi yang dijalankan kantor pusat pada wide area network, berguna untuk melakukan rekonsiliasi transaksi antar cabang.

    Stand In
    Merupakan paket program aplikasi yang berfungsi sebagai server pengganti dimana transaksi-transaksi yang dilakukan oleh media tertentu (misal ATM) dapat dilakukan apabila server utama sedang bermasalah atau sedang melakukan proses tertentu

    ATM Controller dan Monitoring
    Adalah program aplikasi yang melakukan kontrol terhadap mesin-mesin atm baik dalam proses maupun dalam hal terjadi gangguan pada mesin

    Card Access Management
    Adalah program aplikasi yang melakukan kontrol terhadap kartu kartu nasabah baik itu dalam hal pembukaan kartu baru, pengubahan atau penghapusan kartu

    Ticketing
    Merupakan program aplikasi yang berfungsi sebagai program penanganan transaksi Tour & Travel Ticketing

    General Ledger
    Merupakan paket program aplikasi yang berfungsi sebagai program akuntansi dan telah banyak dipakai oleh perusahaan perusahaan di Indonesia, berbasis Windows. General Ledger ini mempunyai banyak fitur-fitur yang tidak dapat dilakukan oleh aplikasi lain

    Inventory Control System
    Merupakan paket program yang berfungsi sebagai kontrol terhadap stock barang, penjualan/pembelian serta hutang / piutang. Program ini telah banyak dipakai di beberapa perusahaan di Indonesia

    Integrated Accounting System
    Merupakan paket program penggabungan antara Inventory Control System dengan General Ledger sehingga berfungsi sebagai kontrol stock barang, penjualan / pembelian serta program akuntansi. Program ini cocok untuk perusahaan perusahaan distribusi secara retail

    Payroll
    Merupakan paket program yang berfungsi sebagai program gaji dan telah banyak dipakai dibeberapa perusahaan di Indonesia

    Banking Online System
    Merupakan paket program yang berfungsi untuk melayani seluruh produk dalam dan luar negeri dari level front office sampai level back office

    Sistim Sumber Daya Manusia
    Merupakan paket program yang berfungsi untuk mengelola data kepegawaian mulai dari perencanaan, recruitment, pelatihan, personalia, gaji dan pengembangan

    Pengadaan Personal Computer
    Branded : Hewlett Packard, IBM, ACCER, COMPAQ, dll
    Lokal / Rakitan
    Upgrade

    Demikian Data Profil PT Metalogic Infomitra di buat, apabila anda membutuhkan jasa kami silahkan hubungi :

    Herry Hermawan
    PT Metalogic Infomitra
    Jl Kemandoran 1 No 20
    Grogol Utara
    Jakarta Barat
    Telp 021 5324790-91
    Hp 081808848274
    www.metalogic.co.id
    herryhermawanmetalogicinformatika.blogspot.com

    BalasHapus